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Numerical Solution of Systems of Ordinary 
Differential Equations With the Tau Method: 

An Error Analysis 

By J. H. Freilich and E. L. Ortiz 

Abstract. The recursive formulation of the Tau method is extended to the case of systems of 
ordinary differential equations, and an error analysis is given. 

Upper and lower error bounds are given in one of the examples considered. The asymptotic 
behavior of the error compares in this case with that of the best approximant by algebraic 
polynomials for each of the components of the vector solution. 

1. Introduction. Interest in the Tau method (see [2], [3], [5]), for a long time 
regarded only as a tool for the construction of accurate approximations of a very 
restricted class of functions, has been enhanced by the availability of software for its 
computer implementation and by the possibility of using it in the numerical solution 
of complex nonlinear differential equations over extended intervals. The approxima- 
tion of the solution of such type of equations is achieved as a result of finding Tau 
approximants of a sequence of problems defined by linear differential equations. 
Details of this technique are given in [6]. 

The subject of this paper is the extension of Ortiz' recursive formulation of 
Lanczos' Tau method [5] to the case of systems of differential equations and, more 
particularly, to its error analysis for such systems. 

Our error estimation technique is applied to three model examples for which the 
exact solution is readily available. It is discussed in general and with more detail 
when applied to the first of these examples. For the second example we show how to 
get upper and lower error bounds; we then compare these bounds with those given 
by Meinardus [4] for the best uniform approximation of each of the components of 
the vector solution by algebraic polynomials, to find that they are asymptotically 
equivalent. The third example is a differential equation with variable coefficients 
and a nonempty subspace of residuals; see [5]. 

Results of numerical experiments on the use of the Tau method for the approxi- 
mate solution of systems of ordinary differential equations, with particular reference 
to stiff systems, are reported in [8]. The problems discussed in this paper can also be 
considered in the framework of simultaneous approximation of a function and its 
derivatives with the Tau method; see [1]. 
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468 J. H. FREILICH AND E. L. ORTIZ 

2. Recursive Formulation of the Tau Method for Systems of Ordinary Differential 

Equations. Without loss of generality we shall consider systems of order two. Let us 

consider the system which is equivalent to the general second order differential 
equation with variable coefficients 

(1) y"(x) + al(x)y'(x) + ao(x)y(x) = 0, 

y(0) = A, y'(0) = B, 0 ? x s r < x, 

where ao(x) and al(x) are polynomials or sufficiently close uniform approximants 
of given functions by polynomials. Such approximations can be derived by using the 
Tau method itself, that is the approach followed in practical applications. If we set 

z(x) = -y'(x), (1) may be reposed as a system of first order differential equations 
which, in matrix form is 

(2) Dy(x) [ao(x) 
-dldx -al(x)[y] 

0 
y (0) [A] Y !d/dx 1 ]zJLo] ~ [-BP 

For the matrix operator D we introduce a sequence of canonical polynomials 

Q = {Qn(x)}, where each element Qn(x) = {Q(n)(x), Q(n)(x)} is a vector such that 

DQ(n)(x) = [] + R(n)(x) and DQ(2) =[] + R(n2)(X); 

R(n)(x), R(n2)(x) C Rs, the subspace of residual vectors associated with D. If no gaps 
exist in the sequence Q, then Rs 0. It is easy to verify that the properties of 
canonical polynomials discussed in Theorems 3.1-3.3 of Ortiz [5] are also valid in 
the vectorial case. From the point of view of the effective construction of approxi- 
mate solutions of systems of ordinary differential equations with the Tau method, 
the fact that there exist a simple recursive relation between the vector canonical 

polynomials of Q is of importance. Such a self-starting recursive relation is con- 

structed, as in the case of one variable, on the basis of generating polynomials; see [5]. 

In the case ao(x) = l/x2, al(x) = l/x, they have the following form: 

[ x ] 0nll' Dx]= (n + I)Xn 1 

Thus, for n 2 O, 

Qn (x) =1 + (2 + n )2] L(n + 2)xn? ] 

and 

Q[1 + + n)2] [( x 

We would be interested in the solution y on some compact interval J, say J = [0, 1], 
to the system (2). If the recursive formulation of the Tau method is used to find an 

approximate solution, it will have the form of a pair of polynomials: yn(x)= 

[yn(x), zn(x )]T, which solve exactly the perturbed system 

(3) Dyn(x) = Hn(x) = [T n)H(l)(x), Tn)H(2)(X)] T2 
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where -j(n)H(l)(x), i-1, 2, is usually a linear combination of Chebyshev or Legendre 
polynomials. The parameters Ti(n) are fixed so that the supplementary conditions 

(4) Yn(O) = [A,-B] 

are satisfied exactly. 
The choice of the shifted Chebyshev polynomials in the right-hand side of (3) 

implies that the image Den of the error en Yn- y has a balancing behavior in each 
of its components. 

The error vector may be measured by any lp sum of the individual lp norms of its 
components, for 1 s p s x. However, our interest lies in the double or vectorial 
uniform norm. For J = [0, 1] and Hn')(x) = Tn*(x), i = 1, 2, 

IIDen 1100 = max{ 11 Ti ni(X ) 2 00 n II Tn)Tn(X)II0} 

s -2n mxl (n) T in)l ?22max{ I T~I 

Now Tn*(x) = con) + c(n)x + -.. +cn)xn, where the coefficients c(n) k - 0(1)n, are 
available. Hence, yn will be of the form 

n n 

Yn= [y, zn]T - (n) 2 C(n)Q()x) + T(n) E 

k=O k=O 

If we set T [Tn), 2n)]T, and Tn*(Q) = cn nQX + * * +cn)Qn(x), we can repre- 

sent the approximating vector solutions by yn = T(n)TTn*(Q). The form of the solution 
when Rs #' 0 follows from the argument given by Ortiz in [5]. An example is 
discussed in Section 4. The independence of the vector canonical polynomials from 
the interval J, in which the solution is sought, makes it possible to apply to systems 
the step by step technique discussed by Ortiz in [7] for the case of a single equation. 
If the steps are of constant length h, the same expression yn will be needed in each 
step: only the T-terms will require updating. In both cases we could say that the 
integration formula used in each step is specifically designed for the given operator D 
by our Tau technique. 

3. The Case of Constant Coefficients. With the perturbed system (3) we are 
computing the exact solution [Yn Zn ] T of 

(5) {a0yn(x) - z'(x) - a,zn(x) 

y5(x) + zZ(x)==T 

with the original and derived initial conditions yn(O) = A, Zn(0) = -B, 

(6) y 2(O) T n)1*(0) + B; Z'(0) = -T(n)1n*(0) + aoA + a,B. 

From (5) 

(7) yn'(x) + alyn(x) + a0yn(x) T n)T *(X) + Tn)[a1Tn*(x) + 

By repeated differentiation and back substitution, we find, assuming A = 1, B 0, 
and n = 4, 

3O 
( 

T4) [a2a 
2 

T4* (0)- T*()+aT4 (O) -a,IT*() aa = T)[aoaT4*(O) - a T4 (O) + aOT4(O) +[aO--] 

+?)[aoT 40 - a~T"o)+ a0aiT<(0 +[o I 
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Likewise, from 

(8) z"(x) + a,z'(x) + a0z (x) = fl)a,Tn*(x)-Tn 

we obtain 

2aa-O 2 3 (4) 2 2 
-a)T4 (0)- aT ()+aT (0) - T* ...(0)] (a~a~ - ag T~~)[(a~a - a~)T~(4 - a0aIT*'(0) + a0T4"O 

+T4?4)[aOa1T4(O) - aoT(O) + a T4"'(O) -a1T4f(O)]. 

We solve these two equations for T(4) and 2 In Table I we illustrate the result for 
particular values of a0 and a1. 

TABLE I 

Evaluation of the Tau parameter for certain values of a0, aI ( n = 4) 

Example a| a T (4)| T(4) 

1 -1 1 -7.7667 X i0-4 4.3971 X i0-4 

2 -1 -1 -3.8373 X I-3 -2.3499 X iO- 

For a general prescription for T( 2 we take the r th derivative of Eq. (7), 
r = 0, 1 ... ,n, and multiply through by (1/X,)r+ 1, i = 1, 2, where A1, X2 are distinct 
roots of the characteristic equation; they may be complex conjugates. 

With each system i = 1, 2, we add all the equations together, making use of the 
fact that (1/Xi)r+l[l + a1(1/X,) + ao(1/X,)2] = 0 to reduce the system. 

Subtracting one system from the other and setting 

(9) S = (2 - XI)y1 2 [(1/X1)r+l - )r+I]T*r)(?) 

r=O 

(10) So = (A2 - [(I//\,, )r ]Tn-2 n 

r= 1 

we find that yn(O) = T (n)Se + T2n)[aISe + SO]. (Note: Se and SO are real.) Similarly, 
from (8) zn(O) = Tn)aoSe - tT(n)SO 

When A = 1, B = 0, the above equations yield 

(11) T = aOSe/ (SO + alSoSe + aoSe2); 2 So/ (So + a1S0Se + a0S ) 

We shall use the following expansion for Tn*(x): 

Tn*(x) - 2((4x )n + 2 (_,)J(nJ I n (4x +n_ 2 ] 

Hence 1*('7)(0) = 22n-1n!; 1T*('7')(0) = 22n ln!(- 1) For2 s k s nwe have 

n 2 nk!n(n-1). (n-k k+ 1)] 

7712 k)0)=2 2 n1n! - 1k22(I - k - 

(12) 22n1n![( 12k (1 2(n 1)) - 

2(n -2)) 

(if- 2(n -,k + 1) 
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THEOREM 1. Suppose X2 - M#1 #0 for t = r and t = p(r), 0 < t ? n + 1, where 
p(r) is the first preceding integer to r satisfying the stated inequality. Necessarily p(r) 
is either r - 1 or r -2. Then if 

I ) A2- p) (1VI)r-p(r) for 1 < r < n + 1, 
2 1 

we may deduce the following asymptotic results 

lrn { (n) I 
- 

0(1)/i X-p(n+2) - IXlp(n+2) 2n- In! 
n -- oo 

lim I Tn) I= 0(1)/I X-p(n+ 1) - X7p(n+ 1) 2n- ln 
n -- cc 

Proof. From Eq. (12) we have that T*(')(o) T <n 2 Tn*( )(O) for all 0 < r < n-1. 
On applying this inequality in (1 1), the result follows. 

Let us assume that X1 # X2 and that both are real. Then 

y(x) = c1 exp(X,x) + c2exp(X2x), z(x) = d, exp(X,x) + d2exp(X2x). 

Set k(x, t): = exp(X2x + XIt) - exp(XIx + X2t), and let W(t) be the wronskian of 
the basis functions for the solution of our equation. Then 

k(x, t) := k(x, t)/W(t) = (X2 - X1) [exp(X2(x - t)) - exp(X,(x - t))] 

and 

yjCk(xI t) = (X2 )1[X1exp(X,(x - t)) - X2 exp(X2(x - 0 I 

which is equal to -I at t = x. 
The solution of (7) has the form 

yn(x) = C1 exp(A1x) + C2exp(X2x)- rn)1n*(0>f(x,0) + jGi(x, t) dt, 

with 

G,(x, t) =[(Trf) + a T2n))Tn*(t)k(x, t)n- Tn)V(t)Ti*(t) at (x,t)] W(t). 

Moreover, 

yn(x) = CX1I exp(A1, x) + C2X2exp(X2x) -2 )Tn(0) 

X [X2exp(X2X) - X1 exp(X,x)]/W(O) 

+GI(x, x) + f0a GI(x, t) dt. 

Clearlyyn(0) C1 + C2y(0) = Cl X + C2 X 2 Then 

-1-l =-_Tn)1T(O)/ (X2- T1), c2 - - n)Tn*(O)/ (X2-X1) 

We set 

(13) g(): T*(t)[ t- I(px, t)] dt, i =1, 2. 

Then 

(14) e I)(X) := Yn(X) -Y(X) = (T) + a1 ))g1(x) - )2(X), 

(e2(X) . (X) - Z(X) = a 2 (+ T \ )92(x). 
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THEOREM 2. Upper bounds for the error vector e(n) = (e(n), e2n))T 

T.(n) + a1T (n) I 
11 e(n) 1 2(n-1 A2 I exp(X2) - exp(X2)1 

I 10I X I X2 
T ___n) IX2exp(X2) - X1 exp(X,) ?2) 

2(n-1) I A-A 

+2(1) 1 xn 2II l ) 

Proof. We set 

I(t) Tn*(t) dt = r ( n + _In-1_ 
Jfl ~~41 n+1I n-1I 

Then 

(15) I I(O) 1= I/ (2(n 2- 1)), while II(t) I< nl[2(n 2 1)], f orO t --: 1. 

Integrating by parts in (13) and using these bounds, we find that for all 0 ? x < 1: 

[LP(x~O)I?n ao(x, t)dt g1(x) I (x,)rI2(n2 - 1)] 

[nat?xt t=x + +@ I(xt) ?nfJO at2 (X t)d 
I 92(X) I< 

[~~~2(n 2 -1)] 

Using the positivity of ext, V2ext and the convexity of XeXx, X > 0, the result follows. 
For n = 4, with the same examples as in Table I, we obtain the following results: 

TABLE II 

Upper bounds for the components of the error vector 

Example e1 92 12) 

1 0.123505 0.442712 2.3629 X 10-4 3.9815 X 10-4 

2 0.335721 0.966375 2.7703 X 10-3 4.4972 X 10-3 

4. The Harmonic Oscillator. We will now refine the previous results for the case of 
the harmonic oscillator 

d 

(16) Dy(x) d - d 

subject to y(O) = [l,O]T, for 0 < x < 1. 
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The canonical polynomials associated with (16) are generated with the technique 
sketched in Section 2. They are 

Qn)(x) n- n(n - 1)Q(n'-)2(X); 

Q(2)(x) nx ] n(n - 1)Q(2(x) 

that is, 

Q[ ], Q (')X) = Q(1)(x) =[X2 -X] 

and 

Q(02)(X) = 1 Q(2)(X) 4'], Q(2)(X) =K22_ 2] 

With them we construct the vector Tau simultaneous approximation yn(x) 
T(n)Tn*(Q). The Tau vector is determined with the help of the supplementary 
condition yn(O) = y(O). For n = 4 we find (to 6D) 

4(x) [ 0.035 808x4 - 0.006 633x3 - 0.502 305X2 - 0.000 153x + I] 
L 0.019 562x4 - 0.182 355x3 + 0.004 552x2 + 0.999 720x J 

THEOREM 3. Upper and lower error bounds for the Tau vector (n). For n even 

0.833 86 .(n) 0902 27 0.456 48 0.(n) 1 <0494 55 
22n-1 <1r j< 2n-1 9 ' 2n-1 I 

2 
22n-1 

For n odd the bounds should be interchanged. 

Proof. From (9) and (10) 

[n/2] [n/2] 

Se = z (-1)nTn (0), SO - ( 
r-O r=O 

while (11) becomes Tn Se/(Se + Si) 72n) S0/(Se2 + Se). We can now apply 
(12) to deduce that for even n 

r=O (4r+2)! 4! L[ 2(n -1))( (n -2)3 n-3 

(_1)[n/2] 0 )4r (2 ___-_-__ 

2 2n-! Se<r=0 (4r)! 2! 2(n- l) 
and 

1 (2)4r- (I1)[n/2I oo ({)4r+1 

2 r=1 (4r- 1)! 22n n! 
0 

r= (4r + 1)! 
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If we take n = 4 and make use of expansions for sin x, sinh x; cos x and cosh x, we 
obtain 

1 cosh(2)-cos(2) + () C)[n/2 cosh(') + cos(') _ 5(')2 

2 4! 22 n! e 2 2!6 

1 sinh( ) - sin(f) (-1)[n/2S sinh( ) + sin( ) ( )4 
22 < 

- 
0< 2 

2 2 
2 2 22n- ln! 

' 
2 3! 

Hence, 

(-1)[n/2I 
0.875 304 < !S < 0.898 4389 

and 

(-1)[n/2I 
0.479 165 < 2n- - S < 0.492 448. 

Consequently, 

S2 + S02 1.049 7> - Se >0.995 8. 
(22n- 1 !)2 

Example. For n - 4 we find 

2.714 X i0- < T(4) < 2.937 X i0- and 1.486 X 20- < T4) < 1.610 X i0-4; 

the computed values are T4 = 2.797 X i0-4 and 24= 1.528 X 10-4. For the ratio 
of the Tau-terms our estimations give 

(4)/4)< 1.875, 

while the computed value is 1.830. 
We shall require the following result, concerning the integral of a Chebyshev 

polynomial between two consecutive zeros, which is easy to derive. 

LEMMA 1. Let the zeros of Tn*(x) be xn_k, k = 1(1)n, where 

Xnk cos2(n - k + 
4>7)_ X -k Cos22 
2 and x =O<x < . <X < X 

Then, 

| Tn*(t) dt = (-1)'Jp(n) sin - forj 1=( I )n - 1, 

where 

p(n) =[nl(n2- )]cos 2 -[I + O(lIn 

and 
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We shall now restrict ourselves to the case of n being even, as the treatment for n 
odd is similar. We shall set P(n) = o(n)(I + 0(1/n)). For a, = 0, ao = 1, (14) and 
(15) take the following form: 

(17) e(n)(x) : yn(x) -y(x) =| [T( )sin(x - t) + n 9)cos(x-t)]Tn*(t)dt 
0 

(18) e2)(X) Zn(X) - Z(X) f [Tn)sin(x - t)- T)cos(x-t)]7n*(t) dt 
0 

THEOREM 4. Upper and lower bounds for the error vector e(n) [e(n) e2n)]T 
(i) For the function component 

0.085 18P(n) < Ie (n) 11 1.502 20(1 + 0(1/n)) 
2' n. ~~~~22(n + 1)! 

(ii) For the derivative component 

0.494 68P(n) < 11 e(n) 11 < 1.769 71(l + 0(l/n)) 

22n n! 2 ~~2 2n(n + 1)! 

Proof. Part (i). To find an upper bound for e (n) we integrate by parts in (17). 

T2(n) -T )(* )ix ~)ox 
e, )(x) = 4 [n + I n -I] 

2(n 2 -) 
( Tn sin x + 2n o 

?fXI(t)[-(n)COS(X - t) + T sin(x) -t)] dt. 

By (15), 

(n)( ) l {T2(T)n + T(sinx + T(n )cOSx +[T2(n)(l - cosx) + T(n sin x]n} 

e~~~~~~x1 ~~~~2(n 2 - 1) 

and 

e(n)11e<[I T2()I (2-ncos(l)) +I T(n) sin(l)][2(+ 1) + 0(l/n 2)] 

< 1.5022(1 + O(I/n))/[22n(n + 1)!]. 

To find a lower bound for IIe (n)I we shall consider e( )(x3n/4) with n an odd 
multiple of 4, n : 12. Then 

X3n/4 = 21[ + cos(3v/4 + r/2n)] 1 (I - 1/ 2), 

cOs(x3n/4 - t)Tn*(t) dt 

> CoSx3nl/4In + CoS(X3n/4 -Xn-2)[In-2-I In- Il 

+ cos(x3n/4 - X3n/4+1)[I3n/4+1 -I '3n/4+2 1] 

n/4-1I 

> Cos x3n/4 In + (P(n) : (_l)k sin(k v/n) 

(n-4)/8 
> 2 cos x3n/4sin lr/2ncp(n) 2 cos 2klr/n. 

k~ =I 
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But 

(n-4)/8 
o2vn-I siv1 

I cos 2k'r/n = cos(2l cs/n) - + sin ln/4 >(n/2 2) + 0(1). 

Hence, for large n 

f| /4 COS(x3n/4-t)Tn*(t) dt > cos[(2 2 )/4]P(n)/2 2. 

Now 
PX3n/4 

sin(x3n/4 - )Tn*((t) dt >[sin(X3n/4 - xn- )In - + sin(X3n/4 -Xn-3)In 2] 

+ - - - 
+sin(x3n/4 - X3n/4+2)13n/4+2- 

But sin(x3n/4 - Xn3) > sin(x3n/4 - - - Xnl)cos(x3n/4 -Xn-3); 

'n-I + In-2 > 0; Xn-3 -Xn- < sin(v/n); cos(x3n/4 - Xn3) < 1. Therefore, 

fX3n/ sin( X3-/4 t)Tn(t) dt 

> -sin(T/n>)(n)[sin(2T/n) + sin(4r/n) + - - - +sin(n/4 - )vln], 
(n-4)/8 

2 sin(2kr/n) [cos(l/n) - cos(v/4)] /(2 sin(v/n)) 
k=1I 

-(1 2-21/2)/ (2 r/n). 

Hence 

/sin(x3n/4-t)Tn*(t) dt > -P(n)(2 - 21/2)/4. 

Therefore 

)el X3n/4) 
> P(n)[I 2 | cos((2 - 21/2)/4) - 1(21/2 - 1)]2F2 

and 

Ile (n) (x)II > 4.259 X 10 -2p(n )2' -2n InL! 

Proof. Part (ii). An upper bound for 11 e(n)(x)II is obtained as before. 

)(n) I 
[ TJ* I (r) _ T_ (X)_ ] + (-)[ T(n) COS X - T2 SinX] /2( ) 

+|fI(t)[Tn)cos(x - t) -T(n)sin(x - t)] dt, 

Ie2 )(x)I { [ [IT)I (2n - (n - 1) cos x)] + IT7@)I[(n + 1) sin x] }/[2(n2-1)] 

e2n)1I T [IT()I (2- cos(1)) + In)Isin(1)][O(l/n2) + 1/ (2(n + 1))] 

< 1.76971(1 + O(I/n))/[22n(n + 1)!]. 

To find a lower bound for 11 e(n)(x)II consider en)(Xn/2) where X -/2 2 . This time 

f|/COS Xn/2-t) Tn*(t) dt > COS(Xn/2)2 sin(7r/2n)ck(n/27r + 0(1)) 

2I cos(4 )P(n), 
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and 

fXn/2( si( 2- t)1T*( t) dt < sin(Xn/2)2 sin(Qr/2n)P(n)(n/27r + 0(1)) 

2sin( 2)P( n) ; 

(-1)/e2n/2/2) < P(n)[ sin(T) - 
n I cos(4)]/2. 

Therefore 

Il e (n)(x) 11 > 0.494 68P(n)2 2n/n n!. 

Remark. Since asymptotically, P(n) - [1 + 0(l1/n)]/(n + 1), our theorem yields: 

Ile (n) l1 = K[1 + O(l/n)]2 2 / (n + 1)!, where 0.49468 < K < 1.76971, 

if n is even. This is comparable to the results of Meinardus in [4, p. 80], for the 
minimal deviation on [0, 1], except that then K= 1. 

5. The Airy Equation. We consider the form of Airy equation 

(19) y"(x) + xy(x) = 1, subject to y(O) = A, y'(0) = B. 

For J = [0, 1], we compute the exact solution [yn 9 Zn ]T of the perturbed system 

(20) Dz ] 
T T 

](n)()[T]T 

dx 

The canonical polynomials associated with the matrix operator D are given by the 
following recurrence relations: 

QM2(X) = [Xk+l,_(k + l)Xk]T - k(k + I)Q1) 1(X), 

Q(') is undefined; Q(l) = [1, O]T, Q(1) = [x, _]T. We note that Q(1)(0) = -2Q(I) 
Q(2)(0)= -6[1,0]T; and 

Q(2) 1(x) = [(k + I)Xkl1, xk+1] T - (k - 1)(k + I)Qk) 2(X) 

Q(2) = [0, II ,9 Q(2) = [09 XIT + Ql); Q(2) = 2 I T. 

Again, we note that Q (2)(0) = -3[0, 1]T; Q (2)(0) -8Q(o)(0). To obtain a Tau 
solution let us take 

Hn(x) = [T(n)T1* l(x) + Tn)Tn*(X), Tin)T,*(X)] 
T 

Then yn(x) takes the form 

n+1 n 

Yn(X) QO)(x) + T (n c(n )Q(I)(x) + 2n) 2 c(n)Q(')( 
k=O k=O 

n 

+ T3 n ) Ck (2 ) (X) . ~ kQk() 

k=O 

We shall employ an extra condition to make the coefficient of Q(')(x) identically 
equal to zero in the expression of yJ(x). 
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For example, let n= 3, A = 3-2/3 F(1/3), B= -3-l/3F(2/3). The tau-terms in 
the expression of yn(x) follow from the three conditions: yn(O) = [A, B]', and the 
cancellation of the coefficient of Q(o)(x) in yn(x): 

1+ ) 4)2 C(4)] + -23)[ C3)-2 C(3)] + Ti?3) [ C(3)] = 0. 

Hence we find 

(3) = 0.011766; 23) =-0.006330; T(3) = -0.003164. 

Let us now develop our Tau solution analytically, using the Green's function. Two 
linearly independent solutions of the homogeneous version of (19) are given by 

u(x) = X1/2Jl/3(2x3/2 /3), v(x) = x1/2J l/3(2x3//3). 

Let k(x, t), W(t) and +(x, t) be defined as before. From the relationships 

Jp'(t) = Jp_1(t) - (pt)Jp(t), Jp,(t) = (pIt)jp(t)- Jp+1(t) 

we obtain, respectively, 

u'(x) = xJ 2/3(2x 3/2/3), v'(x) = 
-XJ2/3(2 /3), 

u"(X) = -x32J /3(2 x3/2/3), v"(x) = -x3/2Jl/3(2x3/2 /3). 

From the series expansion of the Bessel functions we have 

u(0) = 0, v(0) = 31/3/F(2/3), u'(0) = 32/3/r(1/3), v'(0) = 0, 

W(0) = -3/[F(1/3)F(2/3)] and W(t) = W(O) for all t. 

yn(x), zn(x) are the solutions, respectively, of 

(21) yn"(x) + xyn(x) =1 + T *2 + Tn)T,*(X) + Tn)Jn*(x), 

(22) z'(x) = xyn(x) - 1 - n+ )-i) 

The solution of (21) is 

y( x ) =clu ( x ) + c2v (x) )- T3n)T* (0) 4(X, 0) + f (G(x, ) dt 

where 

G(x, t) =[I + T2n)T,*?I(t) + Tfnl)7 *(t)]k(x, t) - nT)T *(t) atk(x, t). 

We deduce, as in Section 2, that 

Yn(X) - y(x) =x G(X, t) - k(x, t) dt. 

On the other hand, one readily obtains from (22) 

zn(x) - z(x) = J Xt[Yn(t) -y(t)] dt [ + Tn)7n(t)] dt. 
0~~~~~~~~ 

We now find upper bounds for the error function in terms of the tau-terms. From 
the expansion Jp(z) =I z/2 IP OF1(p + 1; -z2/4)/F(p + 1) we obtain, for real t, 
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p > -1; I Jp(t) I < I t/2 JIP/F(p + 1). Hence for 0 < x < I 

I u(x) I< (1/3)1/3/r(4/3); 1 v(x) I? (I/3)-1/3/F(2/3); 

I u'(x) 1< (I/3)-2/3/r(1/3); 1 v'(x) I< (1/3)2/3/F(5/3); 

k(x, t) I< 2/[F(2/3)F(4/3)] 21 W(O) I ; 
kt(x, t) ? 9/[2F(1/3)I7(2/3)] 31 W(O) 1/2; 1 ktt(x, t) j< 21 W(O) I 

and 

yn -y 11 < (3/4n) |T () I+ (3/4(n - 1)) I Tn) I + (3/2(n- 1))I| X)I 

HZn - z 1 < (7/8n) I +(7/8(n - 1)) 2 ) + (3/4(n - 1)) 

Hence we find, for n 3, the following bounds for the components of the error 
function: 

H1y3 -yII < 0.011 99, HIz3 - zIl < 0.008 105, 

in agreement with the computed values. 
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